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Abstract 

For identical anomalous scatterers among a majority of 
normal scatterers the structure-factor amplitudes are 
estimated from intensity data obtained either with two 

- 

wavelengths at one side of the absorption edge or with 
one wavelength at either side. Direct methods (or a 
Patterson synthesis) will allow the localization of these 
anomalous scatterers. Test calculations on the known 
structure of the iron-containing protein ferredoxin, 
simulating the effects of synchrotron radiation, show 
the feasibility of the procedure. 

I. Introduction 

The advent of synchrotron radiation as a tunable 
source for X-ray diffraction experiments has opened 
new prospects for the application of anomalous 
diffraction in crystal-structure determination, and 
particularly for the X-ray analysis of proteins. If 
conventional X-ray sources with their characteristic 
wavelengths are used one usually has to resort to the 
introduction of heavier atoms in the protein structure in 
order to secure the event of non-negligible anomalous- 
dispersion effects. This, however, is quite often accom- 
panied by preparative troubles, deviation from iso- 
morphism with the native compound and as a rule 
non-stoichiometric occupancy by the heavy atoms 
introduced. By virtue of the tunability of synchrotron 
radiation, one can get nearer to an absorption edge so 
that even for not-so-heavy atoms - which are fre- 
quently present in natural proteins (e.g. Fe and S) - the 
anomalous component of the scattering factor becomes 
rather large. Thus, by variation of the wavelength fairly 
great changes can be attained in the real as well as in 
the imaginary part of the anomalous component. 
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In this paper we will show that, solely from the 
changes in diffraction intensities, it is possible in 
practice to estimate the structure-factor amplitudes of 
the anomalous scatterers. A Patterson synthesis based 
on these values will produce only the vectors between 
the anomalous scatterers. In our example we deter- 
mined the arrangement of the Fe atoms by application 
of direct methods to the estimated contributions of 
these anomalous scatterers. 

One application of the observed anomalous scatter- 
ing for the determination of the positions of the 
anomalous scatterers has been described by Rossmann 
(1961). In his one-wavelength approach it is shown that 
a Patterson synthesis with {IF(h)l -- IF(h)l} 2 
coefficients will produce peaks at the ends of vectors 
that relate anomalous scatterers. 

In the past several authors have already stressed the 
usefulness of two-wavelength experiments. 

Ramaseshan (1966) introduced an addition- 
Patterson synthesis with neutron diffraction data using 
coefficients IF(h)a 12 + IF(h)a212 (21 and 22 on either 
side of the resonance wavelength), in which vectors 
between anomalous scatterers and normal scatterers 
can be suppressed by a proper choice of wavelengths. 

Bartunik (1978) proposed a new two-wavelength 
Bijvoet-pair method which allows unique deter- 
mination of phases. His method requires that the 
resonant-atom structure is known and that the real and 
imaginary components obey certain conditions. It has 
the great advantage that absorption corrections need 
not be carried out. The use of the ratio of the intensities 
of Bijvoet pairs instead of Bijvoet differences has been 
advocated by Unangst and co-workers (Unangst, 
Miiller, Mfiller & Keinert, 1967). In the same paper 
they also point out the possibility of gaining infor- 
mation about the contribution of the anomalous 
scatterers by measuring intensities at two or more 
wavelengths within the anomalous-dispersion region. 
Hoppe & Jakubowski (1975) suggest the use of a 
parameter-shift procedure in which the anomalous- 
scatterer configuration is determined from two-wave- 
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length data. Finally Karle (1980) in his calculations g 
completely separates the anomalous from the normal 
scattering and obtains linear equations from which the 
values of the anomalous-scatterer contributions are to 
be evaluated. 

In the present paper we will give explicit expressions 
for the contributions of the anomalous scatterers in 
terms of measurable quantities in a two-wavelength 
experiment, which is supposed to be carried out with F°' F+ . . . . .  g 
either both wavelengths at one side of the absorption f~' 
edge or one wavelength at either side. The theory is .4 
restricted to the case of only one type of anomalous vj 
scatterer, but may be extended to more types of sj 
anomalous scatterers and more wavelengths, t 

Our approach resembles that of Singh & T 
Ramaseshan (1968), who, however, tacitly assume the X 
experimental data to be on an absolute scale. This leads 
to expressions for the anomalous-scatterer contri- K 
bution that differ from our final formulae. Further- 
more, it must be noted that their equations (5) and (6) 
are multiplied by the real components of the anomalous a] 
parts of the scattering factors at two wavelengths. This 
implies that their results only apply to an experiment 
carried out with both wavelengths at the high-frequency 
side of the absorption edge. 

2. Definitions and abbreviations 

P, q 

/// 

fo  

f , , f ' ,  

f = f o  + f ,  + i f "  

F o 

U 

number of anomalous and non- 
anomalous scatterers respectively in 
the unit cell 
number of atoms in the unit cell 
(n = p + q) 
high-frequency limit of the atomic 
scattering factor 
real and imaginary dispersion cor- 
rections for the atomic scattering 
factor 
general expression for the atomic 
scattering factor 
structure factor (imaginary com- 
ponent of anomalous dispersion 
omitted) 
structure factor of reflection h for 
wavelength 2j; j  = 1, 2 
structure factor of reflection - h  for 
wavelength 2j; j  = 1, 2 
contribution of anomalous scat- 
terers [only real component of 
anomalous diffusion ( f ' )  included] 
contribution of anomalous scat- 
terers due to imaginary component 
of anomalous diffusion 

P 

F~' = f " Z  exp 2nihrj 
j = l  

0" 2 

C.S.  

n.c.s. 

the contribution of the anomalous 
scatterers with their scattering fac- 
tor equal to unity 

P 

g = Y Tj exp 2nihrj 
j = l  

(Tj is the temperature factor) 
moduli of F °, F ÷ . . . .  , g respectively 

fJ  etc. 
I f (  - f S  
vj - (F?)V(FD ;j = 1, 2 

sj--  f/:(2v~ + !)/2(vJ-- 1); j  = 1, 2 
t - -  ( F , ) / I ( F 2 )  - (F;)2I 
T - -  1/t 
X -  2[(F+) 2 - (F-)2]/[(F+) 2 

+ ( r - )  2] = 2 f " / s  
K - f , , / [ f o  + f , ]  

0.1 ~~ 

- ( f ?  

centrosymmetrical 
noncentrosymmetrical 

3. Geometrical approach 

The procedure is based on the Argand diagrams in Fig. 
1, and aims at the calculation of the ratios between F ÷, 
F -  and F "  from two-wavelength experimental data. 
This ratio is obtained for each of all the Bijvoet pairs 
separately. After this the F "  values of all individual 
Bijvoet pairs are scaled relative to each other by 
observing the common scale of the intensity data. 
Finally, the squares of F "  can be used as Patterson 
coefficients. The resulting map should have the charac- 
teristics of a sharpened Patterson map of the 
anomalous scatterers only, because F "  contains the 
same geometrical factor as the normal contribution to 
the structure factor, and the 'scattering factor' f "  
changes very little with the scattering angle. A plausible 
alternative to the Patterson analysis is the application 
of direct methods. 

The geometrical solution of the first part of the 
procedure is shown in Fig. 2, where A O = OB 
represents for wavelength 21 the length of F~' on some 
arbitrary scale. We now consider a triangle for which 
A P / B P  = F+I/Ff. This ratio then fixes the points D 
( A D / D B  = F+/F-i) and D' (AD' /BD'  = F+/F-;), where 
inner and outer bisectors of the top angle P intersect the 
base of the triangle. As these bisectors are mutually 
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perpendicular they restrict the position of the top P to 
the points on the circle M with DD' as a diameter• 

If the second wavelength 22 is at the same side of the 
absorption edge as 21 we add to Fig. 2 O 1 02 and A 2 02 
= 0 2 B  2 representing A = glF~ - F'II and F~' 
respectively (Fig. 3). This is possible because F["IF~ - 

r~l .  " --fl" " • r2 • I f2' - f (  I : f~ , of which f~', f~", f2' and f2" 
are known. 

The ratio Ff /F{  for the second wavelength allows a 
similar circle to that in the case of )q. The intersection 
of the two circles in this bianomalous case yields two 
possible solutions for P and thus for the ratio between 
F "  and any observable quantity like, for example, F~-. 
When the ratio Ff /F{  is either close to unity, or exactly 
equal to unity, as in the monoanomalous case 
(f2" = 0), the ratio F2/F~ must provide for the second 

F ÷ 

F -  

(a) 

A 
A E" 

÷ P 

(b) 

Fig. 1. (a) Argand diagram in the case of anomalous scattering (for 
symbols see text); (b) Same diagram as in (a), but with the lower 
triangle reflected in the real axis. 

circle• This, however, requires the experimental inten- 
sities for the two wavelengths to be on the same scale. 
In the bianomalous case this condition may serve as a 
means of discriminating between the two solutions 
obtained. In both cases the discrimination can be 
accomplished by means of statistical considerations• It 
may happen that 

(a) for c.s. and pseudo-centrosymmetrical reflec- 
tions the phases of the normal contribution of the 
anomalous scatterers and the contribution of the other 
atoms are equal or differ by 7r. This case results in equal 
ratios F+/F - = 1 for both wavelengths; the intensities, 
however, are different for the two wavelengths• The 
resulting difference in F yields Ag and consequently F "  
by virtue of its constant ratio to Ag. 

(b) the contribution of the anomalous scatterers to 
the structure factor is zero, resulting in four equal 
intensities for the Bijvoet pair, regardless of the two 
wavelengths. As these reflections do not contain an F "  
they are irrelevant for our purpose. 

4. Algebraic calculations 

In this section we derive the algebraic expressions for g 
in accordance with the geometrical approach described 
in § 3. We will also show that the procedure may be 
used for estimating g when the reflection is c.s. 

P 

P' 

Fig. 2. Construction of the locus of points P for which 
P A / P B  = F+/F -. 

D; 

Fig. 3. Construction as in Fig. 2, but now for two wavelengths. 

I 
A2 
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B i a n o m a l o u s  case  ( f ( '  4= 0; f2" ¢ 0) 

Given the values of f [ ,  f2', f [ ' ,  f2", Vl and v2 the 
problem that faces us is to find the coordinates x and y 
of the points P for which P A I / P B  1 = Fi~/F~ and 
P A 2 / P B  2 = F ~ / F f .  We have to solve the equations 

[ ( g f ( ,  + x)2 + y2 l / [ (g f l , ,  _ x ) 2  + y21 = Vl, (1) 

[ ( g f J '  + x) 2 + ( Y -  gA)=l / [ (g f2  '' - x )  2 + ( Y -  gA)2l 

= v 2 .  (2) 

We may rewrite (1) and (2) in the form 

x 2 + y2 _ 2gs ,  x + g2 f [ ,2  = 0 (3) 

x 2 + y2 _ 2 g s 2  x _ 2 g A y  + g2(fff2 + A2) = O. (4) 

Intersections of the corresponding circles give the 
solutions for x and y as a function of g; in Fig. 4 an 
'experimental' example is given. We get for the two 
solutions P~ and P2 

x+_ = gQ+_ 

where 

and 

Q+ = 

where 

1 
{(f],2 _ f ,z ,2)(s ,  _ sz) 

2[A 2 + (Sl - s2) 2] 

+ A2(Sl + s2)+ A ] 4 s l s 2 ( f ~  '2 +f2 ''2 + A 2) 

2 ,,2 f ( ,2)  ( f , , ,2_f~ ,2  A2)2 - -  4 ( s l  f ~ + s~ --  

__ 4A2 f[ ,2]  ,/2} 

R 2 = 2s, Q+ _ f [ , 2  _ Q2+. 

Next g can be determined by (7) i f F  ° is known: 

x2+ + y2+_ = g2(Q2+ + R2+) = (rio)2. 

. y 

P 

"ex~nmenlal" 

PSs= F t -=  79.37 A 

I PA '=  Fz+--4_ 0"59 

calculated 

A,O = OB, =9|7 = 11.04 

\ A o'--o*, =<i=2o.7, 

~ '- f ; l =  3044 

B2 

) B 1 

(5) 

(6) 

(7) 

In practice F ° is unknown and discrimination between 
the two solutions g+ and g_ is needed. We will show in 
{} 5 how these difficulties can be satisfactorily over- 
come. Here we only note that g+ = g- when Q+ = Q-. 

If the reflection is c.s. (then F~ + = F 7 = FI, F2 + = F 2 
--  F2), the point P in Fig. 4 must lie on the y axis so that 
the ratios PA 1 / P B ,  and P A 2 / P B  2 equal unity. Then g 
may be estimated v ia  the equation 

p A  2 2 = [g2 f1,,2 , 2]/[ o2 Ft,2 I / P A 2  + .; 6 .12  + (Y - gA)  2] = F~/F~  

which leads to 

y Z ( r 2  - F 2) + 2gAF21 y 

+ g 2 [ f / , 2  r~ --  ( f ] , 2  + A2) F2] = 0 

from which 

- A F  +_ tF2FZ(f[  '2 +f2 ''2 + d2) / 

_ Fl 4 f2 ''2 _ F2 4 f1"21'/2J 
y+_ = g = gT+_. (8) 

F 2 _ F 2 

Next g may be determined by (9) if Fl ° is known" 

(y+)2 = g2(T+)2 = (r0)2. (9) 

As for (7), F ° is unknown in practice and dis- 
crimination between the two solutions g+ and g_ is 
needed. The reader is again referred to {} 5. 

M o n o a n o m a l o u s  case  (fl" = 0, f2" 4: 0) 

Given the values o f f [ ,  f2', f [ '  (--- 0), f J ' ,  t and v2, the 
problem that faces us is to find the coordinates x and y 
of the points P for which 

and 

P A 2 / P B  2 = F ] / F ~  

p A  2 - -  p B  2 (F~) z -  (F£) 2 
= 

PO~ ( F ° )  2 

We have to solve the system of equations (2) and (10): 

T = 4 g f f f  x / [ x  2 + y2l. (lO) 

Equation (10) may be written as x 2 + y2 _ 4 g t f ~ ' x  = 0, 
which is the equation of a circle. Intersection of the 
circles corresponding to (2) and (10) give the solutions 
for x and y as a function of g. For the two solutions P, 
and P2 we get 

x_+ = g  

where 

and 

- b  + {b 2 -  [c 2 + A2]lf2 "2 + A212} '/2 

2[c 2 + A 2] 

b = c ( f J  '2 + A 2 ) - 4 A 2  f l t ,  

c = (2fJ'  t -  s2) 

= gQ+_, 

(11) 

Fig. 4. Practicalexample in the bianomalous case. yZ_+ =g2(4tfJ '  Q + _ - Q 2 ) = g 2 R Z + _ .  (12) 
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Since 

xZ+ +yZ=gZ{a2+ + R2} : (F0)2 (13) 

two solutions for g arise from (13): 

(g+)Z= (r°)z/(QZ+ + R~). (14) 

F ° is now a measured quantity. Therefore we have only 
to discriminate between g+ and g .  An 'experimental' 
example is given in Fig. 5. 

If the reflection is c.s. (then F + = F~- = F 2 and F ° - 
F1) the point P lies on the y axis so that PA 2/PB 2 equals 
unity. Then g may be estimated via the equation 

PA 2 g2fz"2 + (y - - / Ig )  2 V~ 

p o  2 y2 F 2 

from which 
,,2 2 F~/I 2]1/2 /1F~ + F,[f~ (F  2 -- F~) + 

y+ = g 
( r~  -- F~) 

Next g may be estimated by (16): 

(y+)2 : g2( T+ )Z : F z 

which gives two solutions again, g+ and g_. 

---gT+. 

(15) 

(16) 

5. Practical considerations 

The application of the algebraic procedure described in 
§ 4 requires that two conditions are satisfied: (a) the 
equations estimating g_+ should not be too sensitive to 
experimental errors. In other words, small errors in 
measurements of parameters involved in the equations 
should not give rise to prohibitive errors in g; (b) 
practical discrimination between g+ and g_ should be 
correct for a sufficiently large number of reflections. 

A2 
\ PB2 = F2" = "1'49"5'1 ~ l " ~  

\ . . . . .  / / ° 
\ h op2-g,  / / 

Fig. 5. Practical example in the monoanomalous case. 

As for (a) it should be observed that diffraction 
observations are always and simultaneously affected by 
both systematic and random errors, although to a 
different extent. Typical error sources are the non- 
uniform film sensitivity in photographic techniques or 
counting errors in counting devices, occurrence of 
multiple scattering, absorption corrections (their 
change with wavelength must be taken into account), 
extinction etc. Hoppe & Jakubowski (1975) carefully 
analyzed the effect of the most important error sources 
on the success or failure of a two-wavelength method. 
They found that when the anomalous difference is of 
the order of 2% success may be expected if the 
intensities are measured with an accuracy of 10% 
(corresponding to a structure-factor accuracy of 5%) 
and if the relative accuracy of F ÷ and F -  is good 
enough (less than 0.25%). Such performance may 
frequently be obtained if measuring techniques are used 
which aim at accurate measurements of intensity dif- 
ferences instead of intensities themselves. For example, 
intensities should be measured in 'pairs' in counter 
experiments so that radiation damage will influence all 
measurements in the same way. A consequence is that 
the observed values of F ÷ and F -  are likely to be on the 
same (but unknown) scale. Since only the ratios F+/F - 
are involved in (5) and (6) for the estimation of Q+_ and 
R_+ in the bianomalous case it is sufficient that F ÷ and 
F -  are on the same scale. If the experimental conditions 
comply with the monoanomalous case then the relative 
scale factors of the observations at the two wave- 
lengths are also needed [in view of t in (11) and (12)]. 
Treatment of c.s. reflections [see (8) and (15)1 always 
requires the relative scaling of observations at the two 
wavelengths. This is not an insuperable problem if an 
optimized scheme is used which measures each batch 
of reflections at the different wavelengths consecu- 
tively. In any case the well known schemes for the 
relative scaling of the isomorphous derivatives of 
proteins can be used for the anomalous data too. 

It seems reasonable to suppose that when the 
anomalous difference exceeds 2% (which frequently 
occurs when synchrotron radiation is used) the above 
requirements on the absolute and on the relative 
accuracy of the structure factors can be relaxed even 
more. The anomalous difference can be estimated a 
priori by calculating the probability distribution func- 
tion of the Bijvoet ratio X, for the actual cell contents 
and the wavelength chosen. Theoretical expressions of 
the expectation values of X were derived by Partha- 
sarathy (1967) for n.c.s, crystals in which the 
anomalous scatterers are identical. When many iden- 
tical anomalous scatterers are present, which are 
uniformly distributed in the cell, then 

( X ) = 4J¢o, o 2. (17) 

Thus ( X )  is seen to depend on both K and a. When 
synchrotron radiation is used strong changes in the real 
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and imaginary components of the anomalous scattering 
factor of many atoms can be obtained if the wave- 
length of the X-ray beam is suitably tuned around the 
K or L absorption edge. For example, the scattering 
amplitude of cesium is reduced by as much as 25 
electrons per atom when synchrotron radiation near the 
L m absorption edge is used (Phillips, Templeton, 
Templeton & Hodgson, 1978). An f '  value of about 
--10 and an f "  value of about +6 e can be obtained for 
Fe by tuning the wavelength around its K edge (Phillips 
et al., 1977). That gives x _~ 0.35 at sin 0/2 = 0; higher 
values of x occur when sin 0/2 increases because of the 
fact that f0  decreases when sin 0/2 increases whereas 
f "  is very nearly independent of sin 0/2 (Matthews, 
1966). Such conditions appear to be very favourable 
for minimizing the effects of notable errors in measure- 
ments or in their subsequent treatment and to preserve 
high resolution of the g2 Fourier syntheses. 

As for point (b), g+ and g_, as obtained by 
application of (7), (9), (14), and (16), will be on the 
same relative scale as the diffraction data. This 
situation has no disturbing effect, neither on a 
Patterson synthesis nor on the application of direct 
methods, provided we are able to choose correctly 
between g+ and g .  The discrimination can be made in 
most cases by statistical methods, requiring: 

(i) The application of suitable distribution laws for 
X-ray intensities. Depending on the value of p, 
pertinent distributions (Parthasarathy & Srinivasan, 
1964) must be applied in order to estimate the most 
probable value of g. 

(ii) The observed structure factors are on an ab- 
solute scale. Scaling errors of 5-10% occur frequently 
when statistical methods are applied. However, 
because of (i), errors of such a magnitude can hardly 
impair the results of the procedure. 

As for the discrimination between g+ and g-  in our 
calculations we will always choose the minimum as the 
'best' g. Such a choice is in agreement with the 
probability laws of the normalized intensities (Wilson, 
1949), but an assessment of its general effectiveness 
requires some more tests. This discrimination via the 
minimum value resembles that between the two values 
for the heavy-atom contribution that are derived from 
isomorphous and anomalous differences as done by 
Dodson & Vijayan (1971). 

6. Practical applications 

To gain an insight in the feasibility of the procedure we 
tested the influence of experimental errors by simulat- 
ing experimental conditions and using calculated 
structure factors. We choose the ferredoxin from 
Peptococcus aerogenes (Sieker, Adman & Jensen, 
1972) which crystallizes in P212121 with a = 30.52, b = 
37.75 and c = 39.37 A and Mr -~ 6000. There are eight 
iron atoms in the molecule. The regions of outstanding 

Table 1. Pseudo-experimental conditions 

(i) Synchrotron radiation. 
(ii) Calculated structure factors lB(overall)  = 10 .~2]. 

(iii) Experimental errors simulated by assignment of random errors. 

Fe ;, (A) ;~2 (A) f~ f~ f',' f7 
Bianomalous 1.541 1.743 - I . 1 8  - 1 0 . 0 0  3.20 6.00 
Monoanomalous  1.789 1.743 - 3 . 2 0  - 1 0 . 0 0  0 6.00 
Resolution 2 ,/~ 
Number  of reflections 3328 

electron density are those occupied by two cube-like 
clusters with Fe atoms at four alternate corners in a 
tetrahedral fashion and S atoms at the other four 
corners. In spite of the relatively large Bijvoet dif- 
ferences with Cu K~ radiation, attempts of Sieker et al. 
(1972) to locate the Fe atoms by the Patterson 
synthesis with (IF+I - /F-I) 2 as coefficients failed 
because of the noise in the map and the complexity of 
the F e - S  clusters. The structure was solved by Adman, 
Sieker & Jensen (1973) by means of the heavy-atom 
derivatives. The pseudo-experimental conditions we 
chose are shown in Table 1. The values of (IXI ~ from 
experimental data are 0.39 for 2 = 1.743/k amd 0.20 
for 2 = 1.541 ,/~. 

We made the calculations on the basis of the 
following criteria: 

(a) If F+/F~, F+/F2 and F+/F + are simultaneously 
close to unity then the reflection is not processed. This 
situation corresponds to reflections for which g ~ 0, 
which are of minor importance. In practice we only 
considered the reflections for which Iratio - 11 > 0.05. 
Because of the value of ( X )  this condition is not too 
severe: less than 10% of the reflections were left out. 
Anyway we exclude from further calculations reflec- 
tions for which the value of g+ or g_ is smaller than 3 
(about 25 % of the reflections can be expected to satisfy 
this condition). 

(b) If F+/F-{ _ 1 and F+/Fy _ 1 but F+/F + or 
F?/F7 4= 1, then the reflection is processed as if it were 
centrosymmetrical (pseudo-symmetrical reflections in 
Tables 3, 4 and 5). This procedure aims at the 
minimization of the effects of the experimental errors on 
the calculated value of g. 

(c) If, because of errors, the square-roots occurring 
in the expressions of Q+, R+ and 7"+_ become imaginary 
then they are put equal to zero. 

Inherent to the method is that F ° is not exactly 
known in the bianomalous case. However, in most 
cases (Petsko, 1976), 

F°~½(F + + F1), (18) 

which is used by us as an approximation. Sometimes 
(18) is too rough and its application leads to a bad 
estimation of g. The use of the algebraic relation 

(F°)2=½[(F~) 2 + ( F ; ) 2 l - g 2 f (  '2 (19) 

allows us to find out the reflections for which (18) does 
not hold. We only compare the values of F ° arising 
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from (18) and (19): if they differ by more than 15% we 
do not  use the reflection, otherwise the F ° value given 
by (19) is used as a refined value for calculating g. 

Practical  tests were made (i) without introducing and 
(ii) by introducing errors in the data.  In case (ii) 
r andom errors normal ly  distributed with a = 0.01,  
0 .02  and 0 .04  are independently applied to each 
structure factor.  Since structure factors enter in the 
algebraic equations via the parameters  X for the 
b ianomalous  and T for the monoanomalous  case, the 
errors modify their numerical  values. In order to judge 
the stability of the method we give in Table 2 the 
average values ( I X --Xel ) and ( I T - Tel ) for different 
wavelengths,  where X, T, Xe, Te symbolize the values 
of  X and T without  and with error. 

In Tables 3 and 4 we give, for the b ianomalous  and 
the monoanoma lous  case, respectively, the number  of  
reflections used in the calculations for each chosen 
s tandard deviation a of  the error and the following two 
R indices: 

RF o -- Z IFI ° -  [0 .5 (F  + + Fi-)] I /Z F ° 

Rg =- ~ Igtrue - -  groin I/~-[. gtrue" 

The entries refer to different families of  reflections. 
The tables suggest: (1) equat ion (18) is a quite good 

approximat ion  for practical  purposes even when the 
error is relatively large; (2) the method works in the 
m o n o a n o m a l o u s  case with about  the same accuracy for 
the different families of  reflections; (3) as an effect of  

Table 2. Average values ( I X  - Xel) for the hi- 
anomalous (bia) and ( I T -  T e l ) f o r  the mono- 

anomalous (mon) cases at given 2 and a values 
a 

2 (A) 0.01 0.02 0.04 

1-54052 0-04 0-08 0-14 / 
1.74300 0.02 0.04 0.08 / bia 

1.54052; 1.78892 0.04 0.07 0.15 mon 

the increasing error, the accuracy of  the method in the 
b ianomalous  case is higher for the pseudocentro-  
symmetr ic  than for the non-cent rosymmetr ic  reflec- 
tions. This encouraged us to treat  suitable non-centro-  
symmetr ic  as pseudo-centrosymmetr ic  reflections. In 
Table 5 the ou tcome is shown when the reflections for 
which [see condit ions (a) and (b) in § 5] Iratio - I I < 
0.10  are considered pseudo-centrosymmetr ic .  The new 
procedure caused a notable improvement  in the Rg 
index, which makes the method practicable even in the 
case of  relatively large experimental  errors. 

The direct-methods program system MULTAN 
(Main, Fiske, Hull, Lessinger, Germain,  Declercq & 
Woolfson,  1980) was applied to the contr ibut ions to the 
structure factors of  the Fe atoms as determined by our  
procedure.  The data  sets without error and with 
a = 4% were used. E maps computed with the phases 
from the sets of  second-highest  combined F O M  (by the 
very nature of  our procedure the ~, zero criterion 
cannot  be used) clearly reveal all Fe atoms, both for 
a =  0 and a =  4%. 

Table 4. The monoanomalous case: standard deviation 
a of the error (%), number ofreflections and Rg index 

(%)for each family of reflections 

Number of 
Family of reflections a reflections Rg 

Non-centrosymmetric 0 1426 1.9 
reflections 1 1410 4.4 

2 1398 7.2 
4 1424 13.6 

Centrosymmetric 0 589 3.6 
reflections 1 578 6.4 

2 583 9.7 
4 577 16.4 

All reflections 0 2015 2.4 
1 1988 5.0 
2 1981 8.0 
4 2001 14.5 

Table 3. The bianomalous case: standard deviation a 
of  the error (%), number of  reflections and RFo and Rg 
indices (%) for each family of reflections (see text for 

further details) 

Table 5. The bianomalous case: standard deviation a 
of the error (%), number of reflections and Reo and Rg 
indices (%) for each family of  reflections (see text for 

further details) 

Number of 
Family of reflections a reflections R F0 Rg 

Non-centrosymmetric 0 1371 0.1 3.0 
reflections 1 1384 0.2 12.0 

2 1382 0.3 21.9 
4 1345 0.5 36.6 

Centrosymmetric 0 784 0.1 2.9 
reflections 1 787 0.1 4.8 

2 786 0.1 7.2 
4 802 0.2 12.8 

All reflections 0 2155 0.1 3.0 
1 2171 0.2 9.4 
2 2168 0.2 16.4 
4 2147 0.3 27.4 

Number of 
Family of reflections tr reflections R F0 Rg 

Non-centrosymmetric 0 986 0.2 3.0 
reflections 1 981 0.2 7.0 

2 985 0.3 11.4 
4 995 0.4 22.0 

Centrosymmetric 0 1005 0-1 5.4 
reflections 1 1008 0.1 6.5 

2 999 0.1 8.1 
4 1014 0-2 12.8 

All reflections 0 1991 0. I 4.2 
1 1989 0.2 6.7 
2 1984 0.2 9.7 
4 2009 0.3 17- 2 
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Table 6. Fractional coordinates (× 104) of  the Fe atoms 
inferredoxin 

For each atom the first line gives the coordinates as determined by 
Adman et al. (1972); the second and third lines give the results 
obtained by the two-wavelength technique applied to the data sets 
without error and with o = 4% respectively. 

x y z 

Fe(1) 5 2089 2957 
14 1994 3115 
7 2112 3023 

Fe(2) 407 2523 3453 
400 2497 3390 
420 2502 3392 

Fe(3) 9937 1936 3614 
9976  1940 3628 
9994 2023 3618 

Fe(4) 9536 2537 3354 
9597 2497 3387 
9552 2504 3386 

Fe(5) 8328 253 5142 
8336 209 5092 
8319 320 5140 

Fe(6) 7546 166 4862 
7531 201 4998 
7549 292 4924 

Fe(7) 7665 617 5402 
7856 721 5240 
7818 596 5320 

Fe(8) 7906 776 4773 
7961 740 4771 
7898 746 4741 

In Table 6 the coordinates of the highest eight peaks 
in these low-resolution E maps are compared with 
those determined by Adman et al. (1973). The mean 
difference appears to be only 0.2 A. 

7. Discussion 

The technique that is used most for localizing 
anomalous scatterers is the difference-Patterson syn- 
thesis with coefficients (IF~-I - I F~-1)2 as proposed by 
Rossmann (1961). The interpretation of such a 
single-wavelength anomalous-dispersion Patterson map 
is handicapped by the presence of a background. This 
may be remedied by combining anomalous-dispersion 
information with isomorphous-crystal data (Kar tha  & 
Par thasara thy,  1965). 

The major merit of two-wavelength techniques is the 
fact that one need no longer be dependent on the 
existence of derivatives that exhibit a sufficiently high 
degree of isomorphism with the native compound for 
localizing the anomalous scatterers. Although various 
contributions to the two-wavelength approach have 
already been made, the expressions we give in the 
present paper are the first ones that permit straight- 
forward calculation of the anomalous-scatterer contri- 
bution to the structure factor in the monoanomalous 

case as well as in the bianomalous case. Thus the 
location of the anomalous scatterers, even if they are 
relatively light, can be carried out; this is where 
conventional techniques, like the usual Patterson 
synthesis with observed intensities obviously fail. At the 
same time the anomalous-scatterer configuration deter- 
mined by virtue of its calculated structure-factor 
contribution, serves to detect spurious anomalous 
effects, before they are used for phase determination. 

The application of the formulae to the ferredoxin 
structure led to excellent results even when the data 
used were artificially contaminated with fairly large 
errors. An improvement of the accuracy might be 
attained when the procedure is extended to multi- 
wavelength experiments. 

We wish to thank Dr H. A. Krabbendam for 
valuable discussions and Mr A. J. A. R. Blankensteijn 
for computational assistance. 
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